

Reaping and Rosenthal Families

Arturo Martínez-Celis Joint work with Piotr Koszmider[1] January 2020. Hejnice, Czech Republic.

Winter School in Abstract Analysis 2020.

Rosenthal's lemma

Let \mathcal{A} be a Boolean algebra, $\{\mu_k : \mathcal{A} \to \mathbb{R}_+ \cup \{0\}\}_{k \in \omega}$ be a uniformly bounded sequence of finitely additive measures on \mathcal{A} and let $(\mathcal{A}_n)_{n \in \omega}$ be pairwise disjoint elements of \mathcal{A} and $\varepsilon > 0$. Then there is a $\mathcal{A} \in \mathcal{R} = [\omega]^{\omega}$ such that for every $k \in \mathcal{A}$ we have

$$\sum_{\in A\setminus\{k\}}\mu_k(A_n)\leq \varepsilon.$$

A set $D \subseteq [\omega]^{\omega}$ is *dense* if for all $A \in [\omega]^{\omega}$ there is $B \in D$ such that $B \subseteq A$. Given a non-empty collection \mathcal{D} of dense sets, a set $G \subseteq [\omega]^{\omega}$ is \mathcal{D} -generic if $G \cap D \neq \emptyset$ for all $D \in \mathcal{D}$.

Definition

Given a non-empty collection $\mathcal D$ of dense sets

 $\mathfrak{gen}(\mathcal{D}) = \min\{|G| : G \text{ is } \mathcal{D} - generic\}$

More definitions

A matrix $M = (m_{i,j})_{i,j \in \omega}$ is a Rosenthal matrix if

- $m_{i,j} \ge 0$,
- $m_{i,i} = 0$,
- · $||M|| < \infty$,

where $||M|| = \sup\{\sum_{j \in \omega} m_{i,j} : i \in \omega\}.$

If $A \subseteq \omega$, then $M \upharpoonright A = (m_{i,j})_{i,j \in A}$.

More definitions

A matrix $M = (m_{i,j})_{i,j \in \omega}$ is a Rosenthal matrix if

- $m_{i,j} \ge 0$,
- $m_{i,i} = 0$,
- · $||M|| < \infty$,

where
$$||\mathcal{M}|| = \sup\{\sum_{j \in \omega} m_{i,j} : i \in \omega\}.$$

If
$$\mathsf{A}\subseteq\omega$$
, then $\mathsf{M}\upharpoonright\mathsf{A}=(m_{i,j})_{i,j\in\mathsf{A}}.$

Rosenthal lemma

For every Rosenthal matrix M and for every $\varepsilon > 0$ the set

$$D_{M,\varepsilon} = \{A \in [\omega]^{\omega} : ||M \uparrow A|| \le \varepsilon\}$$

is dense.

Let

$$\mathcal{R} = \{ D_{M,\varepsilon} : \varepsilon > 0, M \text{ is a Rosenthal matrix } \}$$

Definition [D. Sobota]

A Rosenthal family is a generic for \mathcal{R} , $\mathfrak{ros} = \mathfrak{gen}(\mathcal{R})$.

Let

$$\mathcal{R} = \{ D_{M,\varepsilon} : \varepsilon > 0, M \text{ is a Rosenthal matrix } \}$$

Definition [D. Sobota]

A Rosenthal family is a generic for \mathcal{R} , $\mathfrak{ros} = \mathfrak{gen}(\mathcal{R})$.

Questions

- Selective Ultrafilters are Rosenthal Families. Is it true that all ultrafilters are Rosenthal families?
- What is the value of **ros**?

A family $R \subseteq [\omega]^{\omega}$ is *reaping* if for any partition of $\omega = A \cup B$, there is a $C \in R$ such that either $C \subseteq A$ or $C \subseteq B$

 $\mathfrak{r} = \min\{|R| : R \text{ is a reaping family }\}.$

A family $R \subseteq [\omega]^{\omega}$ is *reaping* if for any partition of $\omega = A \cup B$, there is a $C \in R$ such that either $C \subseteq A$ or $C \subseteq B$

 $\mathfrak{r} = \min\{|R| : R \text{ is a reaping family }\}.$

A non-empty family $R \subseteq [\omega]^{\omega}$ is hereditaly reaping if for every $A \in R$, the family $\{B \in R : B \subseteq A\}$ is reaping.

 $\mathfrak{r} = \min\{|R| : R \text{ is a hereditarily reaping family }\}.$

Theorem (Bourgain)

If *M* is a Rosenthal matrix and $\varepsilon > 0$, then there is a partition of $\omega = A_0 \cup \ldots \cup A_k$ into finitely many pieces such that for every $i \in 0, \ldots, i$, $||M | A_i|| \le \varepsilon$.

Theorem (Bourgain)

If *M* is a Rosenthal matrix and $\varepsilon > 0$, then there is a partition of $\omega = A_0 \cup \ldots \cup A_k$ into finitely many pieces such that for every $i \in 0, \ldots, i$, $||M | A_i|| \le \varepsilon$.

Given any partition into finitely many pieces, any hereditary reaping family will have to pick a piece, so

Corollary

Ultrafilter \Rightarrow hereditarily reaping \Rightarrow Rosenthal family.

 $\mathfrak{ros} \leq \mathfrak{r}$

Nowhere reaping

A family $R \subseteq [\omega]^{\omega}$ is nowhere reaping if for every $A \in [\omega]^{\omega}$, the family $\{A \cap B : B \in R \text{ and } A \cap B \text{ is infinite}\}$ is not reaping.

Families with less than r elements are nowhere reaping.

Nowhere reaping

A family $R \subseteq [\omega]^{\omega}$ is nowhere reaping if for every $A \in [\omega]^{\omega}$, the family $\{A \cap B : B \in R \text{ and } A \cap B \text{ is infinite}\}$ is not reaping.

Families with less than $\mathfrak r$ elements are nowhere reaping.

Theorem

Rosenthal families are somewhere reaping (not nowhere reaping).

 $\mathfrak{r} = \mathfrak{ros}$

A family $R \subseteq [\omega]^{\omega}$ is nowhere reaping if for every $A \in [\omega]^{\omega}$, the family $\{A \cap B : B \in R \text{ and } A \cap B \text{ is infinite}\}$ is not reaping.

Families with less than $\mathfrak r$ elements are nowhere reaping.

Theorem

Rosenthal families are somewhere reaping (not nowhere reaping).

 $\mathfrak{r} = \mathfrak{ros}$

Questions

- Are all Rosenthal families reaping families?
- Are all Rosenthal filters ultrafilters?

If M is a Rosenthal matrix, then

$$\overline{\ell}_{M}: C_{0} \rightarrow \ell_{\infty}$$

 $\overline{\chi} \qquad M\overline{\chi}$

is a continuous linear function such that $||F_M||_{\infty} = ||M||$

And basically, every bounded linear function from c_0 to ℓ_∞ looks like this.

If M is a Rosenthal matrix, then

$$\overline{\ell}_{M}: \quad C_{0} \rightarrow \ell_{\infty}$$

 $\overline{X} \qquad M\overline{X}$

is a continuous linear function such that $||F_M||_{\infty} = ||M||$

And basically, every bounded linear function from c_0 to ℓ_∞ looks like this.

$$D_{T,\varepsilon} = \{ A \in [\omega]^{\omega} : ||P_A \cdot T \cdot P_A||_{\infty} \le \varepsilon \cdot ||T||_{\infty} \}$$
$$\mathcal{R}(X, Y) = \{ D_{T,\varepsilon} : \varepsilon > 0, T \in \mathcal{B}(X, Y) \}$$

If M is a Rosenthal matrix, then

$$\overline{\ell}_{M}: \quad C_{0} \rightarrow \ell_{\infty}$$

 $\overline{X} \qquad M\overline{X}$

is a continuous linear function such that $||F_M||_{\infty} = ||M||$

And basically, every bounded linear function from c_0 to ℓ_∞ looks like this.

$$D_{T,\varepsilon} = \{ A \in [\omega]^{\omega} : ||P_A \cdot T \cdot P_A||_{\infty} \le \varepsilon \cdot ||T||_{\infty} \}$$
$$\mathcal{R}(X, Y) = \{ D_{T,\varepsilon} : \varepsilon > 0, T \in \mathcal{B}(X, Y) \}$$

Theorem

Rosenthal families are exactly the generic families for $\mathcal{R}(c_0, \ell_{\infty})$.

Recall

$$\mathcal{R} = \{D_{M,\varepsilon} : \varepsilon > 0, M \text{ is a Rosenthal matrix}\}$$

Consider

 $\mathcal{R}_1 = \{ D_{M,\varepsilon} : \varepsilon > 0, M \text{ is a Rosenthal matrix} \}$

whose columns converge to 0}

Recall

$$\mathcal{R} = \{D_{M,\varepsilon} : \varepsilon > 0, M \text{ is a Rosenthal matrix}\}$$

Consider

 $\mathcal{R}_1 = \{ D_{M,\varepsilon} : \varepsilon > 0, M \text{ is a Rosenthal matrix } \}$

whose columns converge to 0}

Theorem

 \mathcal{R}_1 generic families are exactly the generic families for $\mathcal{R}(c_0, c_0)$ and $\mathfrak{gen}(\mathcal{R}_1) = \min{\{\mathfrak{r}, \mathfrak{d}\}} = \mathfrak{ros}(c_0)$.

Free sets

One important class of Rosenthal matrices *M* are the ones of only 1s and 0s, which can be coded by functions f_M from $\omega \to \omega$ without fixed points. In this case, a set *A* has the property $||M | A|| < \frac{1}{2}$ if and only if $f_M(A) \cap A = \emptyset$.

Free sets

One important class of Rosenthal matrices M are the ones of only 1s and 0s, which can be coded by functions f_M from $\omega \to \omega$ without fixed points. In this case, a set A has the property $||M | A|| < \frac{1}{2}$ if and only if $f_M(A) \cap A = \emptyset$.

 $\mathfrak{ros} = \min\{|\mathcal{A}| : \mathcal{A} \subseteq [\omega]^{\omega} \text{ s.t. } \forall f : \omega \to \omega \text{ w.o. fixed points} \}$

 $\exists A \in \mathcal{A} \text{ s.t. } f(A) \cap A = \emptyset \}$

 $\mathfrak{ros}(c_0) = \min\{|\mathcal{A}| : \mathcal{A} \subseteq [\omega]^{\omega} \text{ s.t. } \forall f : \omega \to \omega \text{ finite to one w.o. fixed points}\}$

 $\exists A \in \mathcal{A} \text{ s.t. } f(A) \cap A = \emptyset \}$

Free sets

One important class of Rosenthal matrices M are the ones of only 1s and 0s, which can be coded by functions f_M from $\omega \to \omega$ without fixed points. In this case, a set A has the property $||M | A|| < \frac{1}{2}$ if and only if $f_M(A) \cap A = \emptyset$.

$$\mathfrak{ros} = \min\{|\mathcal{A}| : \mathcal{A} \subseteq [\omega]^{\omega} \text{ s.t. } \forall f : \omega \to \omega \text{ w.o. fixed points}\}$$

 $\exists A \in \mathcal{A} \text{ s.t. } f(A) \cap A = \emptyset \}$

 $\mathfrak{ros}(c_0) = \min\{|\mathcal{A}| : \mathcal{A} \subseteq [\omega]^{\omega} \text{ s.t. } \forall f : \omega \to \omega \text{ finite to one w.o. fixed points}\}$

 $\exists A \in \mathcal{A} \text{ s.t. } f(A) \cap A = \emptyset \}$

Question

What is the corresponding cardinal invariant for the injective case?

Theorem

Rosenthal families are exactly generic families for $\mathcal{R}(\ell_1, \ell_1)$. As a consequence $\mathfrak{ros}(\ell_1) = \mathfrak{r}$.

Question

What can be said about the rest of the ℓ_p ?

Theorem

Rosenthal families are exactly generic families for $\mathcal{R}(\ell_1, \ell_1)$. As a consequence $\mathfrak{ros}(\ell_1) = \mathfrak{r}$.

Question

What can be said about the rest of the ℓ_p ?

Theorem (Kadison-Singer problem)[Marcus, Spielman, Srivastava] For every $\varepsilon > 0$ and every $T \in \mathcal{B}(\ell_2)$ there is a finite partition $\omega = A_0, \ldots, A_n$ such that for every $i \in 0, \ldots, n$, $||P_A T P_A||_{\infty} \le \varepsilon \cdot ||T||_{\infty}$. Therefore $\mathfrak{ros}(\ell_2) \le \mathfrak{r}$.

Such theorem is impossible for $p = \infty$.

Thank you for your attention!

arodriguez@impan.pl

References

[1] Piotr Koszmider and Arturo Martínez-Celis. Rosenthal families, pavings and generic cardinal invariants. *arXiv/1911.01336*, 2019.